Enhancing Student Performance Using Data Pre-Processing Techniques

¹ Kapil Saxena, ² Shailesh Jaloree, ³ R.S.Thakur, ⁴ Sachin Kamley ¹ Research Scholar ^{1,2,4} S.A.T.I., Vidisha, ³ M.A.N.I.T., Bhopal

Abstract: In present scenario, education data mining is an important concern and develops methods to find hidden and useful patterns from large data set. In this way, Knowledge Discovery in Databases (KDD) provides important steps to convert raw data into useful information. However, quality results always depend on the collected data and feature. For further data mining task, data collection and pre-processing is an important step in order to get the data in correct form. The four years (2012-2015) Government Girls College (GGC), Vidisha, real data is obtained for study purpose. This study mainly highlights important data preprocessing steps like data cleaning, integration and normalization etc. for education perspective. Finally, it is shown by study that after preprocessing task data can be used for further mining task and will be helpful to achieve quality results.

IndexTerms - Education Data Mining, KDD, GGC, Data-Preprocessing.

I. INTRODUCTION

Data collection is one kind of the loosely controlled method of gathering the data. Typically, mostly data are out of range, noisy, missing values, impossible data combinations and many more [1]. The data will generate misleading results if data have not been properly screened. To managerial decision making and quality results, it is very essential to pre-process the raw data. However, the data pre-processing steps converts raw data into an appropriate and understandable form for further processing [2].

Mostly, the real world data are inconsistent, incomplete, missing, uncertain, and contains many errors. The phrase "Garbage in Garbage Out (GIGO)" is well suited for machine learning and data mining applications [3]. Hence, data pre-processing plays an important role to make quality and effective decision making. In this study, different data collections used for implementation, their pre-processing and implementation have been discussed in detail. Figure 1 shows important steps of data pre-processing [4] [5].

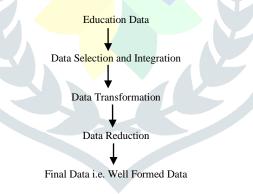


Figure 1. Data Pre-processing Steps

Figure 1 shows important data pre-processing steps.

II. LITERATURE REVIEW

This section describes the brief literature of significant researchers.

Han and Kamber (2006) [6] have discussed Various knowledge discovery process like data cleaning, data integration, data selection, data transformation, data mining, pattern evaluation and knowledge presentation have been discussed.

Tomar and Agarwal (2014) [7] have used pre and post data pre-processing techniques to enhance data quality. Moreover, they have used various visualization tools and data mining software in order to handle the data. They also discussed research opportunities and challenges of KDD process.

Manisha (2014) [8] conducted data cleaning and distinct user identification technique which enhance the preprocessing steps of web log usage data. Using user identification they found out the distinct user based on their attended session time. This will help in personalizing the websites.

Suad and Wesam (2017) [9] have used various data preprocessing techniques kike cleaning, integration, transformation and reduction in order to improve data quality.

Danubianu (2015) [10] has designed data preprocessing framework for student performance prediction based on data mining techniques. He applied a case study regarding the preprocessing operations which transformed the raw data collected by Moodle system in "Stefan cel Mare" University of Suceava, in datasets.

Christa et al. (2012) [11] have discussed the role of data mining in decision making, but inconsistencies and noise present in it may result in poor and erratic decisions. It is important to consider that the real world data is prone to inconsistencies, duplicate values and can use dissimilar units for same attribute. Mining with that kind of data may give unreliable knowledge model.

Gonçalves et al. (2012) [12] have discussed about data cleaning step which makes the data suitable as input for certain algorithms and leads to correct and usable knowledge. The data pre-processing phase typically requires a significant amount of manual work, which may take up 60-90 % of the time, efforts and resources employed in the whole knowledge discovery process.

III. DATA COLLECTION

Data collection is the organized process of collecting and measuring knowledge on variables of concerns that enables us to evaluate outcomes. There are various data collection methods available, but in this research study real student data sets of Government Girls College (GGC), Vidisha (M.P.) for the academic year (2012-2015) have been used [13]. However, the data set contains approximately 248 tuples which is used to build the model. The data set employs more than 20 attributes but only relevant attributes have been considered for study purpose. Therefore, the pre-processing steps have been applied to make them quality data for further data mining process. Here the sample of student data set as showed in Table I and Table II [13].

SSC	HSC	S1TH	SIPR	S1CCE
255	241	211	20	46
286	262	275	17	50
308	- 337	309	18	46
274G	238	220	18	44
400	347	330	20	50
270	254	252	19	55
309	229	163	15	47
513	365	297	18	58
353	292	225	15	55
347	347	275	18	55
487	364	355	62	61
525	417	365	65	65
275	320	312	22	62
288	276	321	70	52
382	315	282	20	55
249	290	291	65	55
452	397	376	72	65
290	302	235	19	55
376	355	266	20	55
455	333	344	74	55
318	304	232	17	56
298	316	294	19	59
255	241	211	20	46
286	262	275	17	50
308	337	309	18	46

T.	1.1.	. т	C.	1	- f (Stude	4	D.	4.0	C - 4	1
12	init	<u>, I</u> .	Sal	mpie	OL 3	Sinde	n	Da	та	Ser	

S4CCE	ATTD.	INCOME	SGPA	CGPA
56	74%	50000	48.89	47.222
57	78%	35000	47.78	57.5
61	61%	30000	56.44	61.333
55	48%	45000	56.67	54.389
57	47%	50000	62.44	66.389
65	58%	45000	52	55.444
56	55%	40000	50	44.833

Table III describes attributes in an abbreviated form.

S.No.	Attributes	Description
1	SSC	Matriculation Marks
2	HSC	Higher Secondary Marks
3	S1-S4TH	Sem1 to Sem 4 Theory Marks
4	S1-S4PR	Sem1 to Sem 4 Practical Marks
5	S1-S4CCE	(Sem 1 to Sem 4 Continuous and Comprehensive Evaluation Marks
6	SGPA	Semester Grade Point Average Marks
7	CGPA	Cumulative Grade Point Average Marks
8	Attendance	Class Attendance Marks
9	Income	Family Income
10	WST	Weekly Studying Time
11	IAH	Internet Access at Home
12	STAS	Study Time After School
13	MTU	Mother's Education
14	FTU	Father's Education
15	SA	Student Address
16	ECA	Extra-Curricular Activities
	Total Attributes=25	

Table III. Attributes in Abbreviated Form

After attribute description, we have classified attribute in 2 forms i.e. academic and non-academic performance indicator which is exhibited by Table IV and Table V correspondingly.

Table IV. Academic Performance Indicators

Indicators		
Attributes	Description	Values
SSC	Per (%) Marks in	Very Good,
	Matriculation	Good, Avg, Poor
HSC	Per (%) Marks in Higher	Very Good,
	Secondary	Good, Avg, Poor
S1-S4TH	Theory Marks Sem1 to Sem	Very Good,
	4	Good, Avg, Poor
S1-S4PR	Practical Marks Sem1 to	Very Good,
	Sem 4	Good, Avg, Poor
SGPA	Semester Grade Point	Very Good,
	Average	Good, Avg, Poor
CGPA	Cumulative Grade Point	Very Good,
	Average	Good, Avg, Poor

Table V. Non-Academic Performance Indicator

Attributes	Description	Values	
FJ	Father's Job	Government, Private, Business, Farmer, Labor	
ME	Mother's Education	Primary, Middle, SSC, HSC, UG, PG	
FE	Father's Education	Primary, Middle, SSC, HSC, UG, PG	
WST	Weekly Study Time in Hours	14-32	
IAH	Internet Access at Home	Yes, No	
ECA	Extra-Curricular Activities	Yes, No	
STAS	Study Time After School in Hours	1-4	
RAC	Resident Address Category	Urban, Rural	

Table VI shows value classification of attributes

Attributes	Range
SSC	IF Marks>=75%=Very Good, Marks>=65% and
	<75%=Good, Marks>=55% and <65%=AVG,
	Marks>=40% and <55%=Poor
HSC	IF Marks>=75%=Very Good, Marks>=65% and
	<75%=Good, Marks>=55% and <65%=AVG,
	Marks>=40% and <55%=Poor
S1-S4TH	IF THM>=75%= Very Good, THM>=60% and
	<75%=Good, THM>=50% and <60%=AVG,
	THM>=40% and <50% = Poor
S1-S4PR	IF PRM >=75%= Very Good, PRM>=60% and
	<75%=Good, PRM>=50% and <60%=AVG,
	PRM>=40% and <50%= Poor
S1-S4CCE	IF CCEM>=75%= Very Good, CCEM>=60% and
	<75%=Good, CCEM>=50% and <60%=AVG,
	CCEM>=40% and <50% = Poor
SGPA	IF SGPA>=75%=Very Good, SGPA>=60 and
	<75=Good, SGPA>=50 and <59=AVG, SGPA>=40 and
	<=50=Poor
CGPA	IF CGPA>=75%=Very Good, CGPA>=60% and
	<75=Good, CGPA>=50% and <60%=AVG,
	CGPA>=40% and <50%=Poor
Attendance	IF ATTD>=75% Very Good, ATTD>=60% and <75%=
	Good, ATTD>=50% and <60% = AVG, ATTD>=40%
	and <50%=Poor

Table VI. Value Classification of Attributes

IV. DATA PRE-PROCESSING

In order to make quality data, firstly data need to be pre-processed that acquire the quality analysis and information to make quality decision [14]. But, quantity of data also plays measure role for data mining process same as the relevance of the data. The quantity of the data is observed based on:

1) Number of tuples (records): it is very good if data set contains more records. If less then results are not optimum.

2) Number of attributes (fields): if numbers of attributes are more then use feature reduction and selection.

3) Number of targets: decide the target class. It can be greater than 1.

Next, the data preprocessing task are described below.

1) Data cleaning: it includes smooth noisy data, identify or remove outliers, fill in missing values and resolve inconsistencies [14] [15].

2) Data integration: data are integrated from multiple databases, data cubes, or files.

3) Data transformation: data are transformed or normalized in an appropriate form as well as aggregated as per requirement [15].

4) Data reduction: reducing the volume, there should not be effect on analytical results i.e. creating the identical or related analytical outcomes.

5) Data discretization: it is the division of data reduction step i.e. replacing numerical attributes with nominal ones.

During this study, mean (average) is calculated in order to fill missing values as well as data normalization formula is used to transform the value in [0, 1]. Table VII shows preprocessed data.

Table VII. Preprocessed Data

SSC	HSC	S1TH	SIPR	S1CCE
poor	verygood	good	good	verygood
poor	good	avg	avg	avg
avg	avg	avg	good	verygood
poor	avg	avg	good	poor
verygood	poor	poor	good	poor
poor	good	poor	good	poor
avg	avg	avg	verygood	Avg
		Table VII		
		Coni		
S4CCE	ATTD.	INCOME	SGPA	CGPA
verygood	good	good	verygood	good
avg	avg	poor	avg	avg
verygood	avg	good	verygood	poor
good	avg	good	avg	good
good	poor	poor	avg	good
good	poor	poor	good	poor
avg	avg	verygood	good	poor
avg	poor	poor	good	good
poor	poor	poor	avg	poor
avg	avg	poor	avg	good
verygood	good	good	verygood	good
avg	avg	poor	avg	avg
verygood	avg	good	verygood	poor
good	avg	good	avg	good
good	poor	poor	avg	good
good	poor	poor	good	poor
avg	avg	verygood	good	poor

V. CONCLUSION AND FUTURE SCOPE

In data mining process, data pre-processing is a very important step. Usually, data cleaning techniques are not applicable to all kinds of data. Deduplication and data linkage are important tasks in the pre-processing step for many data mining projects. Before data is loaded into data warehouse, it is very essential to improve data quality. For large databases finding duplicates is an important part of data management and plays a critical role in the data cleaning process. In this research wok, a framework is designed to clean duplicate data for improving data quality and also to support any subject oriented data. The main benefits of the data pre-processing framework are as follows:

- (1) Duplicate data is easily handled.
- (2) Data cleaning process complexity is reduced using attribute selection algorithm.
- (3) The speed of the data cleaning process is improved
- (4). Identical records are grouped together as cluster by applying some methods i.e. binning to reduce its computational cost.
- (5) Increasing database accuracy by reducing false mismatches.

In future, big education data set will be considered and more data preprocessing techniques will be applied for student performance enhancement.

REFERENCES

[1] C. Romero, S. Ventura, and, E. Garcia, "Data mining in course management systems: Moodle case study and tutorial", Computers & Education, Vol. 51, Issue (1), pp. 368–384, 2008.

[2] P. Long and G. Siemens, "Penetrating the fog: analytics in learning education", Educause Review Online, Vol. 46, No. 5, pp.31-40, 2011.

[3] A. Azevedo and M. F. Santos, "KDD, SEMMA and CRISP-DM: a parallel overview", In Proceedings of the IADIS European Conference on Data Mining, pp 182-185, 2008.

[4] S. E., Sorour, T. Mine, K. Goda, and, S. Hirokawa, "A predictive model to evaluate student performance", Journal of Information Processing, Vol. 23, Issue (2), pp.192–201, 2015.

[5] B.K. Pal and Bharadwaj, "Data mining: A prediction for performance", International Journal of Computer Science and Information Security (IJCSIS), Vol. 9, 2011.

[6] J.H. Kamber and Micheline, "Data Mining: Concepts and Techniques", second edition. San Francisco: Morgan Kaufmann, 2006.

[7] D. Tomar and S. Agarwal, "A survey on pre-processing and post-processing techniques in data mining", International Journal Database Theory Application, Vol. 7, pp. 99-128, 2014.

[8] Manisha V. "A Step up in Data Cleaning and User identification of Preprocessing on Web Usage data". International Journal of Advanced Research in Computer Engineering and Technology IJARCET, 2014.

[9] A. Alasadi Suad and S. Bhaya Wesam, "Review of Data Preprocessing Techniques in Data Mining", Journal of Engineering and Applied Sciences, 1212: 4102-4107, 2017.

[10] M. Danubianu, "A data preprocessing framework for students' outcome prediction by data mining techniques", 19th International Conference on System Theory, Control and Computing (ICSTCC), October 14-16, pp. 836-841, Cheile Gradistei, Romania, 2015.

[11] S. Christa, L. Madhuri, and V. Suma, "An effective data preprocessing technique for improved data management in a distributed environment", In International Conference on Advanced Computing and Communication Technologies for High Performance Applications, International Journal of Computer Applications, Cochin, pp. 52-57, 2012.

[12] P. M. Gonçalves, R. S. Barros and D. C. Vieira, "On the use of data mining tools for data preparation in classification problems", In Computer and Information Science (ICIS), IEEE/ACIS 11th International Conference on (pp. 173-178), IEEE, 2012.

[13] Data obtained from Government Girls College (GGC), Vidisha.

[14] C. Romero and S. Ventura, "Data mining in education", Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27, 2013.

[15] R. Thakur, and A. R. Mahajan, "Preprocessing and classification of data analysis in institutional system using WEKA". International Journal of Computer Applications, 112(6), 2015.